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The Bosch Group is a leading global supplier of technology and services with 394,500 associates 
worldwide (as of December 31, 2020). Its operations are divided into four business sectors:

Mobility Solutions, Industrial Technology, Consumer Goods, Energy and Building Technology

As a leading IoT provider, Bosch offers innovative solutions for smart homes, Industry 4.0, and 
connected mobility. Bosch is pursuing a vision of mobility that is sustainable, safe, and exciting. It uses 
its expertise in sensor technology, software, and services, as well as its own IoT cloud, to offer its 
customers connected, cross-domain solutions from a single source. 

The Bosch Group’s strategic objective is to facilitate connected living with products and solutions 
that either contain artificial intelligence (AI) or have been developed or manufactured with its help.

Involved partners: University of Oslo
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AI is one of the central pillars of Industry 4.0 and IoT, it 
empowers manufacturing by representing physical 
equipment and processes with data and models  such 
Digital Twins, that in turn allow for production simulation, 
process monitoring, analytics and optimization. 

We address this by offering an abstraction layer 
powered with ontologies that mediates between the 
stakeholders involved in AI-solution development in 
enterprises, e.g., data scientists, domain experts, and the 
industrial data. 

With the help of symbolic AI methods that account for 
Knowledge Graphs, ontologies, and rules, the abstraction 
layer will formally capture manufacturing domain 
knowledge, analytical routines, ML modules and pipelines, 
as well as the tasks that ML solutions aim at solving. 
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Purpose of ontology application in the use case
To offer an abstraction layer capturing data, 

expertise, routines and better enable (development of) 
AI solutions 

Indication of the technical challenges
In the context of OntoCommons, the challenges are:

development of high quality ontologies
Enable interoperability of our abstraction layer 

with other ontology-based  solutions 
High quality templates or other means to enable 

end-user development/extension of high quality 
ontologies
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Description of the use case requirements and its 
challenges/highlights 

regarding implementation of the ontology 
(focus on Shall and Should requirements)

Alignment with international standards
Best practices for industrial modelling with ontologies  
Approaches  to  modularization 
Optimal modelling languages (OWL2 RL, QL, etc)

Regarding tools
User-oriented onto development tools
Ontology templates – tools to define, instantiate 
Ontology visualization tools 

other
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Figure 4: Graphical user interfaces for (1.1–1.2) Ontology extender, (2.1–2.2) Domain knowledge annotator, (3.1-3.4) ML knowledge reasoner and (4.1-4.4) ML
interpreter.

Figure 5: QMM-Core, QMM-RSW and Templates where prefixes such as qmm-core are omitted.

The support structures provide functionalities required for the
management of the system. The core structures are described
as following:

• S1: System database: This structure is responsible for
storing ontologies, their mappings to the raw variables,
and ML pipelines. The structure is divided into two sub-
databases: ontology database and ML database. The on-
tology database contains all semantic artifacts. The ML
database contains the raw datasets and prepared datasets to
be analysed and the generated ML models.

• S2: API Handler: The API handler connects all other
three structures. It is designed as a REST API handling

and structuring the requests and responses. This structure
also manages the permissions and security of the system.

• S3: ML components: This structure contains machine
learning scripts and is responsible f0or storing and execut-
ing machine learning algorithms on request over the data
provided by the API Handler. The results and processed
data are then sent back as requested by the API handler.

• S4: Dynamic Front-end: This structure enables users to in-
teract with the system functionalities and data. It contains
the user interfaces required for accessing the system com-
ponents and data used during ML processes. The front-end
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Figure 7: A fragment of the QMM-ML ontology, which gives examples of feature groups, preprocessing and feature engineering algorithms and engineered features.

higher abstraction level, namely at the level of groups of features,
in the ML modules of SemML.

QMM-ML Ontology has classes to categorise features as qmm-
ml:FeatureGroups: time series, categorical features, identifiers,
etc. It also encodes various preprocessing, feature engineering,
and ML algorithms. QMM-ML is partially depicted in Figure 7.
It contains 62 classes, 4 object properties, 2 datatype properties
as well as 210 axioms and 122 annotation assertions; it can be
expressed using ALH(D) Description Logics.

QMM-ML Ontology is used to enhance the dataset manually
described in the Domain Knowledge Annotator with the ML-
relevant information. This is done via reasoning and stored
as Data-to-FG mappings store qmm-ml:FeatureGroups for all
columns in the prepared data.

The ML module of SemML, in turn, has generic operations
and algorithms with the behaviour specified on the level of qmm-
ml:FeatureGroups of QMM-ML. Thus, the ML Module can
retrieve the pre-processing and feature engineering algorithms
for each group of features and automatically derive the types
and the names of the engineered features. To this end, it relies
on the corresponding class definitions in the QMM-ML. For
instance, the pre-processing algorithm for time series is defined
as follows:4

(1) Class: qmm-ml:TimeSeriesPreprocessingAlgorithm

(2) SubClassOf: qmm-ml:isPreprocessingAlgorithmOf

only qmm-ml:TimeSeries

The ML module contains the implementation for each
of the algorithm’s subclasses: qmm-ml:Interpolation, qmm-
ml:Segmentation and qmm-ml:Sorting.

The feature engineering algorithm for time series is defined
analogously:

(3) Class: qmm-ml:TimeSeriesFeatureEngineerAlgorithm

(4) SubClassOf: qmm-ml:isFeatureEngineerAlgorithmOf

only qmm-ml:TimeSeries

4We use the Manchester Syntax of OWL 2 [35], where classes and proper-
ties have prefixes qmm-rsw:, qmm-core:, qmm-ml: that indicate the ontologies
they belong to.

Its subclasses, in turn, are related to the corresponding engi-
neered features, and the ML module will have the implementa-
tion for all of them. For example, based on the definition:

(5) Class: qmm-ml:GetMaximum

(6) SubClassOf: qmm-ml:TimeSeriesFeatureEngineer-

Algorithm

(7) SubClassOf: qmm-ml:hasDerivedFeature only qmm-

ml:Maximum

the Feature Engineering module of SemML will apply the
implemented GetMaximum algorithm to all time series features
and generate new features with the token “Maximum” in their
name for all of them.

In ML terms, the way how our semantically enhanced ML

module works is: ⌘ : X
"
��!

�
{FG1} · · · {FG# }

 QMM-ML

������!�
{FPG1} · · · {FPG }

 
! Q̂I, where ⌘ is a hypothesis that

maps raw input features X into an estimation Q̂I of a weld-
ing quality indicator QI. This mapping has two intermediate
steps: (1) using Data-to-FG Mapping " it fetches a set of stan-
dardised Feature Groups FGs and (2) using QMM-ML it turns
them into a set of Feature Processed Groups FPGs. This makes
the developed ML approaches easily extendable to similar tasks
and datasets. Moreover, this enables non-ML-experts to better
understand the ML approaches, and even to modify the ML ap-
proaches with minimal training of ML expertise. Note that the
classical ML module starts with X and may develop di�erent
ad hoc feature processing strategies for di�erent tasks and data
sources to estimate Q̂I, or schematically: ⌘ : X ! Q̂I.

ML-Templates. This library essentially contains three groups
of templates: (1) templates that describe the meta-information,
e.g. relationship between datasets and entries; (2) templates that
connect the annotation input by the users as domain terms to the
QMM-Core and to the QMM-ML; (3) templates that can be used
to construct ML pipeline ontologies, e.g. the structure of ML
pipelines from starting layer (prepared data layer), to feature
processing layer (data preprocessing), to ML modelling layer,
and to the end layer (ML models layer) , the general pattern of
input-algorithm-output.

ML Pipeline Catalogue. ML solutions are developed before-
hand by ML experts and encoded as ontologies in the catalogue.
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Main expected benefits
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List the main benefits (business or others) that you expect to get from OntoCommons demonstrator 
case

Improving the ontologies we use towards a better quality 
Aligning our ontology with various standards
Aligning and verifying our ontology against best practices 
Improving our ontology-based solution via the improvement of the underlying ontologies 

6.
Figure 9: Schematic illustration of examples of HS ontology and ML pipeline ontology. Some object properties and classes are omitted for simplicity.

groups corresponding to 2.7 million records of the feedback
curves.

• meta settings database: with general configurations of weld-
ing sheet material, geometry, adhesive, etc.; has 23 fields, 196
groups corresponding to 40.5 million records.

These raw data has various formats, including SQL database,
Excel tables, text files, RUI-files and can have many discrep-
ancies in variable names and data formats. Thus, we merged
di�erent protocols, databases, etc., unified data formats, variable
names, and transformed them into one uniform data format. This
process of data preparation and integration was time-consuming
and resulted in 263 fields, 53.2 million records, and 1.4 billion
items in total.

Our next step was to understand what data is more important.
We organised several workshops with welding process experts
and selected and prepared fragments of data that correspond
to two representative welding machines, Welding Machine 1
(WM1) and 2 (WM2) that perform two and four welding pro-
grams respectively. These integrated data correspond to 2.74
million records and 44.61 million items and capture 1998 and
3996 welding operations of WM1 and WM2 respectively.

These data are comprised of features in two levels:

• Data on the welding time level, which contain 4 meaningful
Process Curves, including electric current (�), voltage (*),
resistance ('), pulse width modulation (%,"). They are
measured per millisecond, and are of di�erent lengths, ranging
from 400 to more than 1000 samples, depending on the actual
welding time. These process curves form Time Series (TS)
on the welding time level.

• Data on welding operation level, which contain 188 meaning-
ful Single Features (SF). They are constants for each single
welding spot. The consecutive single features form time se-
ries on the welding operation level. More precisely, these
single features are:

– Program Numbers (ProgNo) are nominal numbers of the
welding programs, each prescribing a set of welding con-
figurations.

– Count Features, including WearCount, which records the
number of welded spots since last dressing, DressCount,
which records the number of dressings performed since

last cap change, and CapCount, which records the number
of cap changes.

– Status, describing the operating or control status of the
welding operation, e.g. System Component Status, Monitor
Status, and Control Status.

– Process Curve Means, which are the average values of the
process curves during their welding stages, calculated by
the welding software system.

– Quality Indicators, which are categorical or numerical val-
ues describing the quality of the welding operations, e.g.
Process Stability Factor, HasSpatter, and the output feature
Q-Value.

4.3. Problem Definition

The quality monitoring task is to maintain the Q-Value as
close to 1 as possible for all welding spots during manufactur-
ing. In practice, we would like to do it by learning estima-
tions of Q-Values before the actual welding happens and then
to take preventive actions if the predicted value is too low:
change parameters of welding machines, replace welding caps,
etc. More formally, we need an estimation function 5 mapping
manufacturing data to the Q-Value of the next welding oper-
ation &next as: &next = 5 (-1, ..., -prev�1, -prev, (�⇤

next), where
-1, ..., -prev�1, -prev include data (single features and time se-
ries) of previous welding operations and known features of the
next welding operation ((�⇤

next, e.g. welding program).

5. Demonstration of the Semantic Software on the Use Case

We now demonstrate how SemML is applied on the use case,
including the domain ontologies, ML pipeline ontology, detailed
mechanism of semantic enhanced ML and a short introduction
of the ML pipelines in the use case.

5.1. Domain and Application Ontologies

We now present two domain ontologies and several applica-
tion ontologies that were used in our use case.

QMM-Resistance Spot Welding Ontology. By applying our
templates, Bosch domain specialists created the QMM-RSW –
ontologies for the resistance spot welding process. QMM-RSW
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