

ONTOLOGY-DRIVEN DATA DOCUMENTATION FOR INDUSTRY COMMONS

OntoCommons and FAIR principles

Rita Giuffrida, Yann Le Franc, Anna Fensel, Umutcan Simsek OntoCommons project

OntoCommons "Ontology-driven data documentation for Industry Commons" has received funding from the European Union's Horizon Programme call H2020 -NMBP-TO-IND-2020-singlestage, Grant Agreement number 862136

Overcoming interoperatibility bottlenecks

&

facilitating data sharing and valorisation

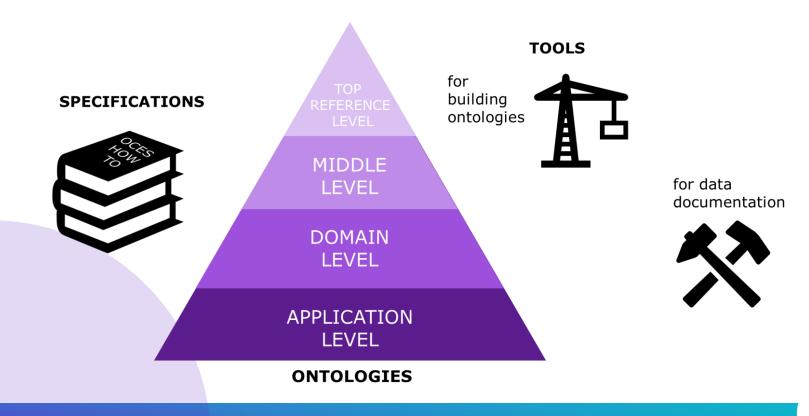
ONTO COMMONS **OntoCommons** Objectives

• OBJ 1 – Community Development

- CSA project 2 cooperation establishment & engagement in providing input
- Increasing the effectiveness of OntoCommons (Coorperation)
- Two-way communication *OntoCommons* ↔ stakeholders (Engagement)

• OBJ 2 – Ontology Commons EcoSystem

- As a foundation for data documentation
- EcoSystem requirements and specifications
- Set of ontologies as a part of the EcoSystem
- EcoSystem tools


• OBJ 3 – Demonstrators

- Will prove the effectiveness of OntoCommons EcoSystem
- Ready to use ontologies, tools and data samples (dissemination purposes)
- Relying on existing or external resources

ONTO COMMONS **Ontology Commons EcoSystem**

OSFair2021

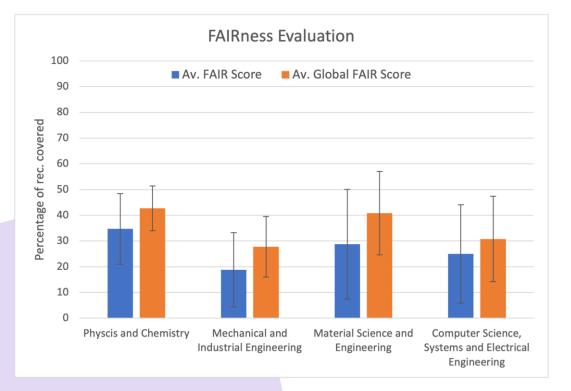
CONSORTIUM

22/09/2021

OSFair2021

FAIR principles in OntoCommons

Assessing FAIRness of domain-specific semantic artefacts


- Landscape Analysis of semantic artefacts for Material Science and Manufacturing ۲
- Corpus: ۲
 - 108 ontologies identified (including ontologies from demonstrators)
 - 74 in a machine readable format
- Semantic Artefacts must be FAIR (principle I2) ٠
- How FAIR are these ontologies? How can we improve the situation? ۲

ONTO COMMONS Assessing FAIRness of domain-specific semantic artefacts

- Used FAIR Semantics recommendations from FAIRsFAIR doi: 10.5281/zenodo.5362010
- 17 recommendations: 9 mandatory, 6 recommended, 2 Optional
- Established 13 questions to evaluate FAIRness based on the 9 relevant recommendations for ontologies
- Evaluated manually 44 ontologies and attributed two scores:
 - FAIR Score: % of mandatory recommendations covered
 - Global FAIR Score: % of recommendation covered (including recommended and optional)

Assessing FAIRness of domain-specific semantic artefacts

Next steps

 Compare our evaluation system with existing systems (AgroPortal, FooPS,F-uji, ...)

Automate evaluation

Goal for OntoCommons Demonstrators Work

We aim to **define requirements for demonstration cases to deliver demonstrators** for different applications of ontology based data documentation and interoperability.

We aim at **a validated set of cases of industrial importance** demonstrating the expected impact of *OntoCommons* standardisation, operational, FAIR, practicality, user-friendliness, cross-domain nature, uptake of project results and software interoperability.

ONTO What we do with OntoCommons Demonstrators?

05.1	Collect and analyse requirements from 11 initial use cases				
05.2	Specify the initial 11 cases in more detail				
05.3	Outline, select and specify in detail further more "ambitious" use cases				
05.4	Manage the process of stakeholder and partner involvement in demonstration activities				
05.5	Develop test and validate the industrial use cases and provide feedback				
05.6	Facilitate agreement on the industrial use cases by wider stakeholder involvement				
05.7	Support networking of industrial cases and wider stakeholders				

11 initial demonstrators

Ν	. Name	Case Description	Domains	TRL	Project Partners
					(and 3rd Parties)
1	IRIS -	Assembly plant facility design	Aerospace,	TRL start: 4	UIO
	IndustRIal co-	process, logistics flow and logistic	Manufacturing	TRL end: 6	(Airbus)
	design Support	resource design.			
2	SeDIM -	Microchip manufacturing. Enable	Manufacturing,	TRL start: 3	BOSCH
	Semantic Data	integration of heterogeneous	Resources, Process	TRL end: 4	
	Integration for	factory-wide data for analytics of	plants, Industrial		
	Manufacturing	factory machines, processes and	Facilities		
		their monitoring and control.			

	3	EngDemostrator	Comparison of industry standard	Pro s An arighted with	dorten starten Ares	s(2020)4141149 - 06/08/20
			material grades as listed in EN, ISO	Material technology	TRL end: 6	(Aibel)
			or ASTM standards through an			
			ontology based reasoning engine.			
	4	Tribomat	The use case will shorten the time	Manufacturing – at	TRL start: 3-4	TEK
			and the number/size of experiments	various sectors (e.g.	TRL end: 6-7	
			required to identify the behaviour	Automotive,		
			of a material or combination of	Aerospace, Energy,		
			them (e.g. metal, coating, lubricant))		
			with respect to specific operation	Processing		
			conditions.	Materials		
				characterization		
	5	EVMF -	Facilitate platforms interoperability	Materials,	TRL start: 4	UKRI, GCL
		European	and services within an open	Nanotechnologies,	TRL end: 6-7	
		Virtual	European Virtual Marketplace	Biotechnology,		
		Marketplace	Framework, involving tools and	Manufacturing and		
		Framework	ontologies from the Allotrope	Processing		
			Framework and NMBP materials			
	-		modelling marketplace projects			
	6	PSS - Product	Improve effectiveness and	Equipment	TRL start: 4-5	ATB
		Service Systems	responsiveness of decision-making	industry,	TRL end: 6	(OAS)
			in logistics control systems based	Manufacturing		
			on data sharing built around big			
			volume data streams semantically			
			described by dedicated PSS			
01/07/2021			ontologies			

ONTC COMN	7	Feedstock Quality Assurance	Evaluation and quality assurance of feedstock for further processing through: measurement of different feedstocks, correlation with other feedstocks quality and correlation with quality of produced components	Materials, Materials Processing, Quality Control, Materials Characterisation	TRL start: 3 TRL end: 5-6	FRAUNHOFER	
	8	NanoMaterials Characterisation	 Nanomaterial risk assessment, evaluation of risk control efficiency and decision making. Phase identification in multiphase materials for nanoindentation process 	Nanosafety, Nanocomposites, Characterisation, Materials Design	TRL start: 4 TRL end: 6	IRES	
	9	Ontology-based Maintenance	Standardize the terminology of the maintenance process, focusing in particular on the diagnosis of technical malfunctioning, and leveraging on knowledge extracted from service information flows and repair records	Equipment Industry, Maintenance of Large Manufacturing Machines	TRL start: 3-4 TRL end: 5-6	CNR (Adige SpA)	
	10	Cu/Al Data	Enable effective data documentation and cross domain data reuse in the copper and aluminum industry	Materials Characterization	TRL start: 4 TRL end: 6	UIO (ElvalHalcor)	
01/07/2021	11	Complex Equipments	Describing and analysing the digital twin of products/industrial assets in manufacturing and energy industry across their lifecycle from design to service based on IT systems	Factories of the Future, Manufacturing	TRL start: 4 TRL end: 6	UIO (Siemens)	

۲

1st demonstrator workshop, interviews and surveys took place

Key findings

- Many of the targeted domains well-represented, with the exception of biotechnology
- Certain requirements are particularly prominent (valid for more than half of the demonstrators)
 - Conformance to standards (e.g., industry, ISO, W3C standards)
 - Interoperability between between top level ontologies
 - Easy maintenance of ontologies by non-ontology experts
 - Tools to support collaborative development of ontologies
 - There is room for improvement in terms FAIRness

- Approximately 20 more external/EU projects demonstrators will be added to OntoCommons, by autumn 2021 – watch out for the open call!
- Advantages of being an OntoCommons demonstrator
 - Getting access to a group of experts in semantic technologies, particularly ontology development
 - Network with other companies in your domain
 - Participation in project workshops and visibility gain
 - Increase the Technology Readiness Level (TRL) of your use case
 - Have an impact on the OntoCommons roadmap in NMBP domains
 - Access to guidelines and advices for improving the FAIR compliance of your data and metadata
 - Engage with the work of various standardization bodies

 One of the main expected impacts of the OntoCommons project is to improve the "FAIRness" of demonstrator use cases

 In order to measure whether such an impact created, we conducted a survey to establish a baseline in terms FAIR-compliance

• The survey was filled by 11 initial demonstrators

FAIR Survey

- The questions in the survey were adopted from the RDA FAIR Data Maturity Model guidelines
 - 42 indicators in 4 dimensions

https://www.rd-

alliance.org/system/files/FAIR%20Data%20Maturity%20Model_%20speci fication%20and%20guidelines_v1.00.pdf

4 muicalois

4.1 List of indicators

Table 1 FAIR data maturity model indicators

FAIR	ID	Indicator		Priority
F1	RDA-F1-01M	Metadata is identified by a persistent identifier	•••	Essential
F1	RDA-F1-01D	Data is identified by a persistent identifier	•••	Essential
F1	RDA-F1-02M	Metadata is identified by a globally unique identifier	•••	Essential
F1	RDA-F1-02D	Data is identified by a globally unique identifier	•••	Essential
F2	RDA-F2-01M	Rich metadata is provided to allow discovery	•••	Essential
F3	RDA-F3-01M	Metadata includes the identifier for the data	•••	Essential
F4	RDA-F4-01M	Metadata is offered in such a way that it can be harvested and indexed	•••	Essential
A1	RDA-A1-01M	Metadata contains information to enable the user to get access to the data	••	Important
A1	RDA-A1-02M	Metadata can be accessed manually (i.e. with human intervention)	•••	Essential
A1	RDA-A1-02D	Data can be accessed manually (i.e. with human intervention)	•••	Essential
A1	RDA-A1-03M	Metadata identifier resolves to a metadata record	•••	Essential
A1	RDA-A1-03D	Data identifier resolves to a digital object	•••	Essential
A1	RDA-A1-04M	Metadata is accessed through standardised protocol	•••	Essential
A1	RDA-A1-04D	Data is accessible through standardised protocol	•••	Essential
A1	RDA-A1-05D	Data can be accessed automatically (i.e. by a computer program)	••	Important
A1.1	RDA-A1.1-01M	Metadata is accessible through a free access protocol	•••	Essential
A1.1	RDA-A1.1-01D	Data is accessible through a free access protocol	••	Important
A1.2	RDA-A1.2-01D	Data is accessible through an access protocol that supports authentication and authorisation	•	Useful
A2	RDA-A2-01M	Metadata is guaranteed to remain available after data is no longer available	•••	Essential
11	RDA-I1-01M	Metadata uses knowledge representation expressed in standardised format	••	Important
11	RDA-I1-01D	Data uses knowledge representation expressed in standardised format	••	Important
11	RDA-I1-02M	Metadata uses machine-understandable knowledge representation	••	Important
11	RDA-I1-02D	Data uses machine-understandable knowledge representation	••	Important
12	RDA-I2-01M	Metadata uses FAIR-compliant vocabularies	••	Important
12	RDA-I2-01D	Data uses FAIR-compliant vocabularies	•	Useful
13	RDA-I3-01M	Metadata includes references to other metadata	••	Important
13	RDA-I3-01D	Data includes references to other data	•	Useful
13	RDA-I3-02M	Metadata includes references to other data	•	Useful

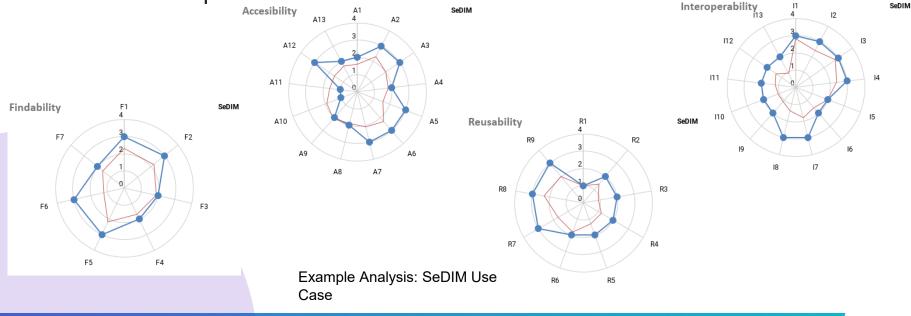
FAIR Survey

- We measured the current FAIR progress in the following scale:
 - 0 not applicable
 - 1- not being considered yet
 - 2 under consideration or in planning phase
 - 3 in implementation phase
 - 4 fully implemented

https://ec.europa.eu/eusurvey/runner/b64d2bc9-28da-3347-332b-0dc6970789d3

Disclaimer

The European Commission is not responsible for the content of questionnaires created using the form creator and manager. The use of EUSurvey service does not imply a recommendation or expressed within them.


Pages Introduction Demonstrator Information Findable Accessible

C Findable

- C.1 Metadata is identified by a persistent identifier
 - not applicable
 - O not being considered yet
 - under consideration or in planning phase
 - in implementation phase
 - fully implemented
- * C.2 Data is identified by a persistent identifier 🔞
 - not applicable
 - not being considered yet
 - under consideration or in planning phase
 - $\bigcirc\,$ in implementation phase
 - fully implemented
- C.3 Metadata is identified by a globally unique identifier
 - not applicable
 - not being considered yet
 - under consideration or in planning phase
 - in implementation phase
 - fully implemented
- * C.4 Data is identified by a globally unique identifier $\, \odot \,$
 - \bigcirc not applicable
 - O not being considered yet
 - $\bigcirc\,$ under consideration or in planning phase
 - \bigcirc in implementation phase
 - fully implemented

• We used radar charts for each demonstrator to depict their current FAIR compliance

- Initial analysis of 11 use cases have been completed
- From FAIRness point of view, there is still room for improvement
- Fortunately, a majority of the demonstrators are willing to implement the majority of FAIR principles
- The analysis we have done can guide, for instance, WP3 and WP4 to identify the most important features for ontologies and tools to foster higher adoption of FAIR principles

ONTO MONS Join us as a demonstrator by September 30!

The Call to become the new OntoCommons demonstrator is open!

Apply now!

https://ontocommons.eu/news-events/news/call-become-newontocommons-demonstrators