

OntoCommons Project OntoCommons Ecosystem (OCES)

Arkopaul Sarkar (ENIT)

OntoCommons Member and WP3 Lead

The most tangible outcome – OntoCommons Ecosystem

OCES is a combination of fully harmonized ontology artifacts (from top to domain) and associated tools and methodologies for building upon existing and creating future ontologies. The complementary components of OCES therefore provide a complete solution for data documentation in the NMBP domains.

Ontologies harmonisation

OntoCommons will provide harmonisation between ontologies, through Top Reference Ontology through a multilevel alignement:

- **○** Syntactic alignment (OWL, FOL, etc.) for all the ontologies that will be part of the OES.
- Terminological alignment enabling a minimum taxonomical interoperability between ontologies, by <u>pasting a sub-branch of one</u> <u>ontology under another ontology</u>.
- Semantic alignment will be targeted primarily by OntoCommons <u>only</u> within TLO branches,.
- Formatting alignment including e.g. labelling of classes, the definition of terms and the annotations.

The OCES will adopt a <u>pluralist approach</u> for the ontological representation of a domain of interest, meaning that <u>more than one upper ontology</u> may be adopted.

COMMONS Intra and Cross-ontology interoperability

47

ONTO INTO INTO COMPANIE COMMONS Status of TRO

- ◆ BFO to DOLCE and vice versa is already published (v0.3).
- Now working on DOLCE EMMO mappings.

```
### http://purl.obolibrary.org/obo/BFO_0000028
      <http://purl.obolibrary.org/obo/BFO_0000028> rdfs:subClassOf <http://www.loa.istc.cnr.it/dolce/dolce-owl/DOLCEbasic#SpaceRegion>
39
     ### http://purl.obolibrary.org/obo/BFO 0000029
     <a href="http://purl.obolibrary.org/obo/BF0_0000029">http://purl.obolibrary.org/obo/BF0_0000029</a> rdfs:subClassOf <a href="http://www.loa.istc.cnr.it/dolce/dolce-owl/DOLCEbasic#Feature">http://www.loa.istc.cnr.it/dolce/dolce-owl/DOLCEbasic#Feature</a> .
42
     ### http://purl.obolibrary.org/obo/BFO_0000031
      <a href="http://purl.obolibrary.org/obo/BFO_0000031">http://www.loa.istc.cnr.it/dolce/dolce-owl/DOLCEbasic#NonPhysicalEndurant
```

DOLCESBED RI

http://purl.obolibrary.org/obo/BFO_0000038 Rui de Edit Name <http://purl.obolibrary.org/obo/BFO_0000038> rdfs: BF02DOLCE:R10a bio.BFO_0000211(?x, ?y) * bio.BFO_0000040(?x) * bio.BFO_0000028(?y) -> dolce.constantlySpatiallyLocatedAt(?x, ?y) BF02DOLCER10b bfo:BFO_0000211(?x, ?y) * bfo:BFO_0000029(?x) * bfo:BFO_0000028(?y) → doice:constantlySpatiallyLocatedAt(?x, ?y) Name BF02D0LCER18 bfo:BFO_0000108(?x, ?y) * bfo:BFO_0000015(?x) * bfo:BFO_0000038(?y) -> dolor:presentAt(?x, ?y) BF02D0LCE:R2 BF02DOLCE:R1b bfo:BFO_0000108(?x, ?y) ^ bfo:BFO_0000029(?x) * bfo:BFO_0000038(?y) → doice:presentAt(?x, ?y) ### http://purl.obolibrary.org/obo/BFO_0000040 BF02DOLCE:R1c bfo:BFO_0000108(7x, 7y) * bfo:BFO_0000020(7x) * bfo:BFO_0000038(7y) -> dolce:presentAl(7x, 7y) BFO continuant part of at all times' (BFO 'material entity' (BFO 'material entity') a DOLCE constantPart0 <http://purl.obolibrary.org/obo/BFO_0000040> rdfs: BF02DOLCER1d bfo:BFO: 0000108(7x; 7y) * bfo:BFO: 0000040(7x) * bfo:BFO: 0000038(7y) -> doice presentAt(7x; 7y) BF02D0LCE/R1e bfo:BFO:0000108(?x, ?y) * bfo:BFO:0000031(?x) * bfo:BFO:0000038(?y) → doice:presentAt(?x, ?y) BF02DOLCE R BF02DOLCE:R3 bfo:BFO 0000177(?x, ?y) ^ bfo:BFO 0000029(?x) ^ bfo:BFO 0000029(?y) → dolce:constantPartOf(?x, ?y) bfo:BFO 0000177(7x, 7y) ^ bfo:BFO 0000040(7x) ^ bfo:BFO 0000040(7y) -> doice:constantPartOf(7x, 7y) BF02DOLCE:R4 bto BFO_0000177(?x, ?y) * bto BFO_0000031(?x) * bto BFO_0000031(?y) -> dolor constantPartOf(?x, ?y) blo BFO_0000132(7x, 7y) * blo BFO_0000015(7x) * blo BFO_0000015(7y) -> doice partOf(7x, 7y) BF02DOLCE:R5 BF02D0LCE:R6 bfo:BFO_0000132(7x, 7y) * bfo:BFO_0000038(7x) * bfo:BFO_0000038(7y) -> dolce:partOf(7x, 7y) BF02DOLCE:R7a bto:BEO .0000166(?x, ?v) * bto:BEO .0000040(?x) * bto:BEO .0000015(?v) → doice:constantParticipantOf(?x, ?v) BF02DOLCE:R7b bto BFO 0000165(?x, ?y) * bto BFO 0000029(?x) * bto BFO 0000015(?y) → doice constantParticipantOf(?x, ?y) BF02DOLCE/R7c bfo BFO_0000166(?x; ?y) ^ bfo BFO_0000031(?x) ^ bfo BFO_0000015(?y) → doice constantParticipantOf(?x; ?y) bfo:BFO_0000195(7x, 7y) * bfo:BFO_0000020(7x) * bfo:BFO_0000040(7y) -> doine.directQualityOf(7x, 7y) BF02DOLCE:R8a bfo:BFO 0000195(?x, ?v) * bfo:BFO 0000020(?x) * bfo:BFO 0000029(?v) -> dolor-directQualityOf(?x, ?v) BF02DOLCE:R8b BF02DOLCE R9 bfo:BFO 0000199(2x, 2y) * bfo:BFO 0000015(2x) * bfo:BFO 0000038(2y) → dolos temporallyLocatedAt(2x, 2y)

doing presential 2v. 2v) * doing Amount Officiation 2v) * doing Timelrotence (2v) > Mr. RED. 0000 108(2v. 2v)

3.4.1 continuantPartOf

 \mathbf{t}_{db} **28** $\mathfrak{D} \cup \mathfrak{M}_{db} \vdash x ::_{t} i dcnt \rightarrow cP(x, x, t)$ $(a_b 27)$ *Proof.* According to $(d_{db}10)$ and $(d_{db}11)$ if x is a material entity, a site, or a continuant fiat boundary such that PRE(x,t) holds then the thesis follows from $(a_d 17)$. According to $(d_{db} 12)$, if x is a BFO spatial region then it is a DOLCE space region; the thesis follows from (a_d5).

 $\mathbf{t}_{\mathsf{db}}\mathbf{29} \ \mathfrak{D} \cup \mathfrak{M}_{\mathsf{db}} \vdash \mathsf{cP}(x, \mathsf{v}, t) \land \mathsf{cP}(\mathsf{v}, \mathsf{z}, t') \land \mathsf{tmP}(t, t') \rightarrow \mathsf{cP}(x, \mathsf{z}, t)$ $(a_b 28)$ *Proof.* If x is an endurant then the thesis follows from $(a_d 16)$ and $(a_d 18)$. If x is a space region the thesis follows from $(a_d 7)$. If x is a quality the thesis follows from (a_d16), (a_d18), (a_d34) and (a_d36).

 \mathbf{t}_{db} 30 $\mathfrak{D} \cup \mathfrak{M}_{db} \vdash cP(x, y, t) \land x \neq y \rightarrow \exists z (cP(z, y, t) \land z \neq y \land \neg cO(z, x, t))$ (a_b29) *Proof.* If x is an endurant the thesis (mainly) follows from $(a_{d}19)$. If x is a space regions the thesis (mainly) follows from $(a_d 8)$. If x is a quality the thesis (mainly) follows from (a_d19), (a_d34), and (a_d36).

 \mathbf{t}_{db} 31 $\mathfrak{D} \cup \mathfrak{M}_{db} \vdash cO(x, y, t) \rightarrow \exists z (\forall w (cP(w, z, t) \leftrightarrow cP(w, x, t) \land cP(w, y, t))) (a_b 30)$ *Proof.* If x is an endurant the thesis (mainly) follows from $(a_d 21)$. If x is a space regions the thesis (mainly) follows from $(a_d 10)$. If x is a quality the thesis (mainly) follows from (a_d21), (a_d34), and (a_d36).

ONTO PONTO POR OCES Ontology Stack COMMONS OCES Ontology Stack

COMMONS Bridge concept

- Standalone ontology entities with an extensive documentation: a practical dictionary tailored for ontologyimplementation.
 - Explicitly connected to the core Knowledge Domain Resources and Standards but <u>still separated</u>.
- They are akin to universal adapters/converters, supporting (and facilitating) strong semantic alignments among a plurality of ontologies.
 - Interoperability for data exchange
- (Vertical) Mediated connection result from multiple connections. Reasoning spreads downwards (in general from higher to lower-level ontologies).
- (Horizontal) Data sharing is established
- Secondary benefits: Disambiguity, Modularisation

ONTO COMMONS LOT Methodology

ONTO COMMONS Components of the ontology ecosystem toolkit

Ontology Encoding (OCES Technical Principle)

- IRI Convention
 - OCIRI Grammar (based on RFC3987) —separate for TLO, MLO, DLO
 - Permanent host resolver (purl, w3id, doi, ARK)
 - Opaque identifier Scheme

A class 'Plastic' in a domain ontology called 'plastonto'

http://purl.ontocommons.eu/ontology/dlo/srao-0000211/plastonto#oxcy4f

- Metadata Convention
 - Common set of annotation properties for
 - Ontology metadata, Term metadata, Mapping metadata (SSSOM)
 - Based on MOD, OMV, DC, IOF-av, EMMO-av, FIBO-av
- Language and expressivity, Reasoner and prover, Serialisation format,
 Versioning scheme, Development management and issue tracking

ONTO MANAGEMENTO COMPANISTRY C

ONTOCOMMONS BRIDGE-CONCEPT MATERIAL DEVICE

GENERAL CONCEPT INFO:

IRI:	Suggested entity new IRI.
OWL Type:	Class
Concept	A Device is a physical entity which is engineered to the end of completing a specific
Elucidation:	type of tasks, or to have a particular set of properties which allows them to perform
	certain functions under a predetermined (generic, or non-generic yet well-defined)
	range of scenarios.
	Devices can be either disposable or meant for repeated/prolonged use, and they can
	either use a source of energy as one of the inputs for the completion of the relevant
	task or not.
	Infrastructures can be considered Devices only if the infrastructure itself is pivotal in
	the completion of the tasks/to perform certain functions, and the relevant
	tasks/functions are not bound to a specific location.
	Domain: Industry and Manufacturing / Empirical Sciences - Materials Science.
Labels:	Labels used to address the concept, ordered as:
	skos:prefLabel: Device
	skos:altLabel: Tool (Broad)
	skos:hiddenLabel: Instrument

KNOWLEDGE DOMAIN RESOURCES:

Related Domain	-Wikipedia: "a device is usually a constructed tool"; "a tool is an object that can extend
Resources:	an individual's ability to modify features of the surrounding environment. Although
	many animals use simple tools, only human height whose use of stone tools dates

https://github.com/OntoCommons/OntologyFramework/blob/dev/bridge-concept-template.md

UC1-15

UC1-16

UC1-17

UC1-18

UC1-19

UC1-30

UC1-31

UC interview

UC interview

UC interview

UC interview

OC interview

UC interview

UC interview

What are the required materials of different processes?

What are the information for a system requirement?

What are the component of a system model

What are the information for a process plan?

What are the information for system design?

What are the sub-processes of a design process?

What are the types of system model?

Requirement Engineering (methodology, Competency Questions, ORSD)

Design critieria, design rule, TLR

1	Purpose (mandatory)			
	The use case aims to demonstrate:			
	- decreased development time via automatized decision making and			
	improved re-usability,			
	- improved reliability via traceability,			
	- improved communication between product, assembly and industrial system			
	experts via data integration and increased domain knowledge			
	interoperability.			
2	Scope (mandatory)			
_	Increase the interoperability and improve the communication between aircraft			
	design, assembly design and the industrial system design			
3	Implementation Language (optional)			
_	imperioritation cariguage (optional)			
4	Intended End-Users (optional)			
•	1) Knowledge scientist			
	2) System engineering expert			
	3) Assembly process engineer			
	4) Simulation engineer			
5	Intended Uses			
J	The system is expected to support decision-making during aircraft industrial			
	system design. Some expected benefits include:			
	1) Predict behavior, explore architectural alternatives early in the			
	development process, and perform trade studies to assess which design choices make the most sense for manufacturing performance. 2) Develop a cognitive twin based on captured domain knowledge, models and simulations.			
			Perform a Business transformation that includes new organizations and	
				new roles to develop the models and to perform manufacturing engineering
				activities.
	6	Ontology Requirements		
1. Non-Functional Requirements				
This use case will be based on the output of a relevant project (QU4LITY)				
pilot. Another objective is to improve the interoperability by aligning the				
application ontology to the top level ontology or top reference ontology which				
are expected output of OntoCommons.				
1. Functional Requirements: Lists or tables of requirements written as				
	Competency Questions and sentences			
7	Pre-Glossary of Terms (optional)			
	1. Terms from Competency Questions			
	Terms from Answers			
) Objects			
	1. Objects			

Ontology Requirements Specification Document

Deliverable D3.4 contains detailed requirement for NMBP domains based on 11 use cases and stakeholder's input

Accepted

Accepted

Accepted

Accepted

Accepted

Accepted

Accepted

IndustryPortal http://industryportal.space/

ONTO PONTO PONTO

- Two primary editors (completely free, natively hosted) are recommended.
- Currently being integrated to the ecosystem platform (IndustryPortal)

SousLeSens

OCEAN (Web-Protégé)

FAIRness improvement with O'FAIRe in IndustryPortal

Thanks

Questions?

FOLLOW US ON **In**

Contact

www.ontocommons.eu

Arkopaul Sarkar, <u>asarkar@enit.fr</u>

Hedi Karray, <u>mkarray@enit.fr</u> (Technical Coordinator)

