
Industrial Ontologies @ Siemens

Dr. Maja Miličić Brandt Siemens Technology Semantics and Reasoning

Ontocommons Workshop DORIC-MM 2021 07 June 2021

Unrestricted © Siemens 2021

Providing technology solutions to address the greatest challenges of our time

Page 2 Unrestricted | © Siemens 2021 | February 2021

SIEMENS

We commute in cars designed with **Siemens software** ...

... built in factories running on **Siemens automation ...**

... charged by a renewable and decentralized Siemens smart grid.

We work in **smart buildings** that keep us comfortable and healthy ...

... with a **carbon neutral footprint** that keeps the planet healthy as well.

We travel on Siemens trains ...

... and on planes brought to life using **Siemens technology**.

Example Knowledge Graphs – Siemens Technology drives innovation from world-class research to company-wide adoption

SIEMENS

Google

SIEMENS Ingenuity for life

SIEMENS

SIFMENS

SIEMENIC

WIIIeS(UIIeS		SIENIENS		Ganne	•	SIEIVIENS	SIEIVIENS	SIEWIENS
	Google Knowledge Graph announced	Proceedings (FEE Theorem 1 Aspects) Breakthrough: ML on graphs	Startups & big entering KG ma	players Gartner	add KGs cycle	Mindsphere SDI adding graph support	 > 30 KG projects, > 10 productive use > 6 CCTs 	Shared ontologies
Technology inn	ovation activities						Ontology libra	ries
reennology min	ovation activities	DON'T BE STUPID!			Data	a Strategy	Shared & reu	sable ontologies
Funded p	niects	Cognitiv	e	Business Buy-in	Acc	elerate adoption &	roll-out projects	
i unded pi	0,6013	Deep Le		Proof-of-values and	competence	e ramp-up		
LARKE LARGE Knowledge Colliger	Optique	Machine Learning	g on graphs					
Neue Technologien Furdas Internet der Dienste	Knowledge Graphs as o	data layer on top of SQL D	Databases					
Semantic knowledge graphs &	& reasoning							
Technology Investments								_
investments	Research			Product D	EV	_		

Gartner

Unrestricted © Siemens 2021

FY12

Milestones

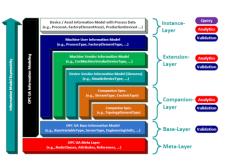
Page 6 June 2021

Dr. Maja Milicic Brandt Siemens Technology

FY21

Several Siemens initiatives working towards common, reusable semantic models

6 G. A.


Smart Infrastructure Building Products

Building Technologies Domain Model

- community-based intiative since 2019
- OWL models: Location, Asset, Zones & Functions,

Digital Industries Factory Automation

Plant Data Model

- OWL models generated from UPC UA companions and vendor-specific information models
- engineering models

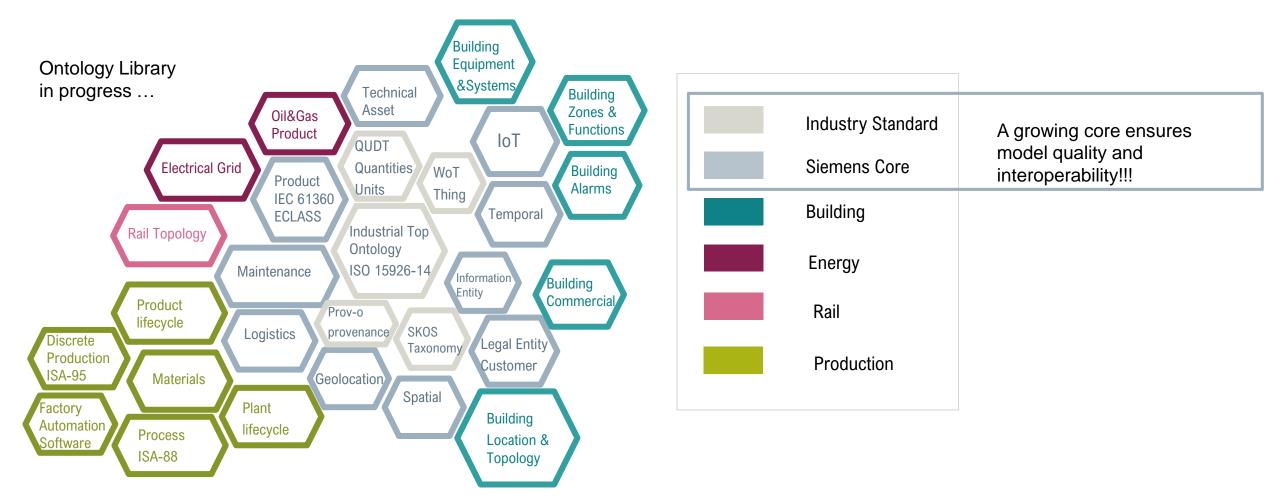
Digital Industries

product and plant life cycl Manufactured and Shipped (ISO 10303)	omechanical systems (both e) Electromechanical Systems	Constructed Asse (ISO 15926)
(Product Life Cycle)	Producing Plants Utility	(Plant Life Cyc
(produc	tion lines, process cells) (energy/w	ater plants) (buildings
Auto, Aero, and Consumer		
Products		oducts (OEM)

Digital Industries Cross-Domain Ontology

- new intiative
- scope: product and plant lifecycle

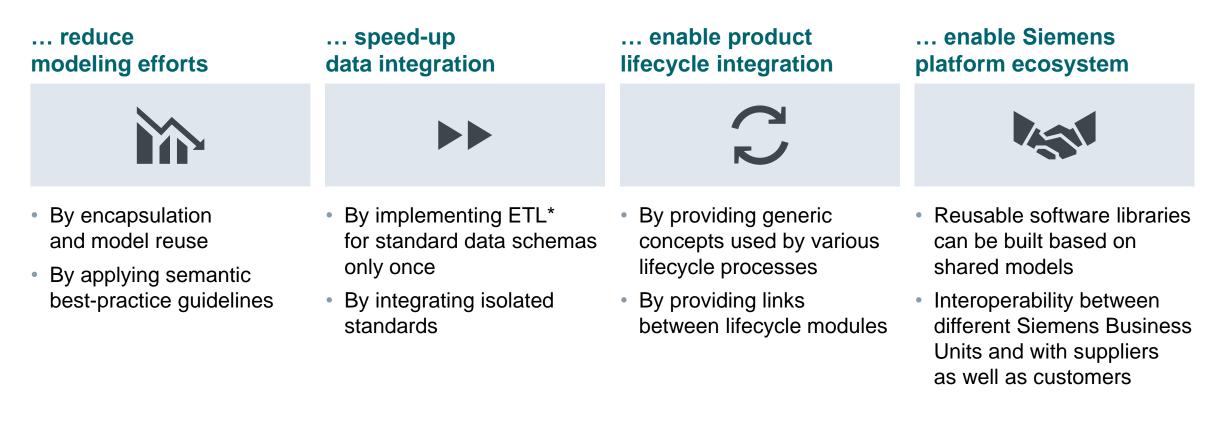
Siemens Energy Gas&Power Transmission


Siemens Energy Transmission Domain Ontologies

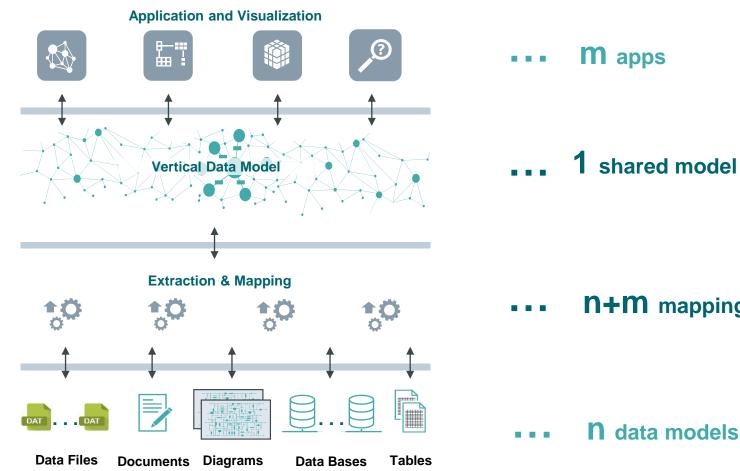
- cross-unit intiative since 2020 (meanwhile all BUs)
- support domain experts by a tool set to create high quality ontologies without informatic proficiency

...

Ongoing Initiative: Shared Ontology Guidelines, Upper-Ontology and Siemens-wide Ontology Publication Platform



Unrestricted © Siemens 2021 Page 8 June 2021



A library of reusable, Siemens-relevant semantic domain models will ...

Shared semantic models help to avoid maintaining an exponentially growing number of bilateral mappings

High quality semantic data models that are shared reused across applications

N+M mappings

n data models

For each application and data source one mapping to the shared model

The basic pillars for building an ontology library: **Content, guidelines and community**

 Content What objects to represent? What is the agreed semantics? What is common, what specific? 	 Guidelines How do we formalize and document core models? How to integrate standards? 	 Community Who contributes? How do we synchronize activities across Siemens?
1 Collect and share existing data models	Agree on language and naming conventions for core models	1 Setup of community and working groups
2 Prioritize verticals/standards and propose common core	2 Agree on support for existing standards and tools	2 Define processes, IP and owner- ship model for common core
3 Review and extend core model library	 Provide documentation and tools to facilitate (re-)use 	 Prepare communication and dissemination material
Ontology Library	Guideline document, Standardization	Regular JF and Working Groups

Repository & **Publication Platform**

OIL& Orid	Sile Deal			-	Roberty.
Energy	B ill disc		-		1111
Core	Building Core	Prod	luction	Transation	

Unrestricted © Siemens 2021

June 2021

ISO/TR 15926-14

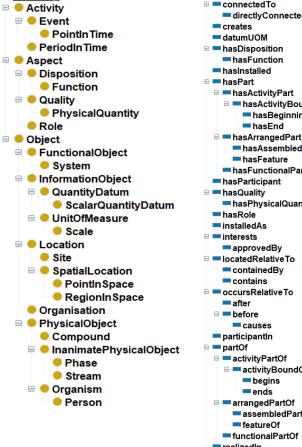
QUDT: Quantities, Units, **Dimensions Ontology**

ECLASS goes OWL/RDF

Dr. Maja Milicic Brandt Siemens Technology

- 1. We need a shared upper-level ontology
- 2. We need to actively contribute to the community efforts outside of Siemens
- 3. Ontology modeling is hard and takes time
- 4. We need inference

Learning 1 We need a shared upper-level ontology


🖻 🔴 owl:Thina

Industrial Top-Level Ontology ISO 15926-14

- Gas&Power Products •
- **Building technologies**
- **Factory Automation** Software
- Manufacturing ۰ Processes/Skills

Currently mainly used to ensure the quality of modeling! In future, it will enable better interoperability

GIST **Digital Industries**

Cross-Domain Ontology

Alignement with ISO • 15926-14 planned

Open source OWL Ontology with business/industry relevant terms

who	what	where	when	why
Person	Catalog Item	Place	Time Instant	Intention
Organization	Contract	Room	Temporal Relation	Commitment
Group	Account	Geo Point		
	Event	Geo Region	how	how much
	Collection	Geo Route	Template	Magnitude
	Network	Geo Segment	Behavior	Unit Of Measure
			Language	Base Unit

hasAssembledPart hasFeature hasFunctionalPart hasParticipant hasQuality hasPhysicalQuantity hasRole installedAs interests approvedBv IocatedRelativeTo containedBy contains occursRelativeTo after before causes participantln partOf activityPartOf activityBoundOf begins ends arrangedPartOf assembledPartOf featureOf functionalPartOf realizedIn

owl topObjectProperty

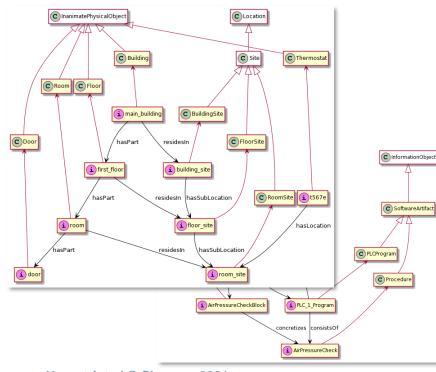
hasFunction

directlyConnectedTo

hasActivityBound

hasEnd

hasBeginning


representedBy qualityQuantifiedAs

roleOf

Learning 2 We need to actively contribute to the community efforts outside of Siemens

Contributed to ISO 15926-14 via JIP READI

Contributing to QUDT

After reviewing several unit ontologies, we found QUDT most suitable for Siemens use cases.

- Compliant with IEC/ISO 80000 units
- Includes all known systems of units/quantities
- Includes unit conversions
- Cross referencing to UCUM, UN/ECE, and CDD (IEC 62720) unit codes

Active development supported by Siemens researchers

- Siemens colleagues contributed 600 units and cross-references to IEC 62720 and UN/ECE
- Continuous support and exchange

Contributing to **ECLASS** goes OWL/RDF

- Siemens (DI) and Siemens Energy (GP) is a member of a cross-company intitative (together with Schneider Electric and others) that has developed a first draft of ECLASS in OWL
- Alignement with Siemens representatives in IOT-relevant standards ongoing

Unrestricted © Siemens 2021

Learning 3 Ontology modeling is hard and takes time

Finding people with the right competencies is hard!

- Data scientists understand OWL, but do not understand the domain and usually do not even want to understand it in depth
- Domain experts know the domain but do not understand OWL
- None of them understands upper ontologies Implication

What about re-using and contributing to existing open-source industrial ontologies?

- First problem: there are few of them and usually do not provide what is required by the use case
- Second problem: there are several incompatible ones for the same domain
- Third problem: in order to re-use or contribute you first have to build up experience and expertise yourself

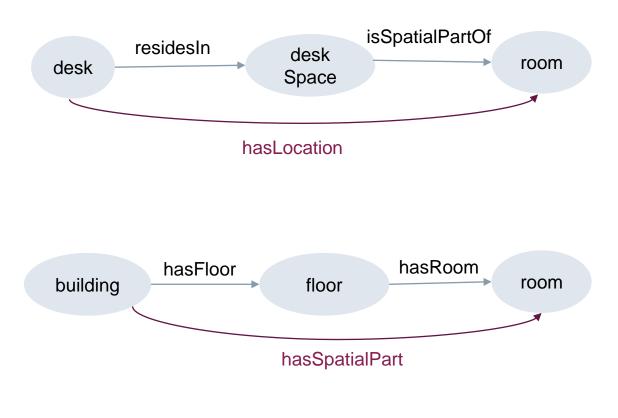
What can be done?

- Training, coaching, building an ontology modeling community within Siemens
- Enabling domain experts to model the knowledge with tools which guide to create and maintain compatible models whitout informatic proficiency
 - Use templates (e.g. OTTR*) in the backend to abstract away from OWL and higher-level ontologies
 - Generate SHACL automatically

OTTR*=Reasonable Ontology Templates (https://ottr.xyz/)

Dr. Maja Milicic Brandt Siemens Technology

Learning 4 We need inference


- This seems to be obvious considering OWL is the chosen formalism
- However, most OWL ontologies we use currently are weekly axiomatized because the curent focus is rather on representation and less on reasoning
- As our knowledge graphs grow and the use-cases to be supported require different model granularity, it is slowly becoming clear that inference is needed!
- Problem: Widely-adopted graph databases such as Neptune do not support inference as of now.

hasPeripheral

point

sensor

represents

controller

hostsPoint

June 2021

Dr. Maja Milicic Brandt Siemens Technology

Dr. rer. nat. Maja Milicic Brandt

Siemens AG Technology Research in Digitalization and Automation Semantics & Reasoning T RDA BAM SMR-DE Otto-Hahn-Ring 6 81739 Munich, Germany

maja.milicicbrandt@siemens.com

